Awesome Sarah Walls Awesome Sarah Walls

Shoulder Range of Motion for the Overhead Athlete

Okay. So today’s post is on the shoulder and range of motion needed for the overhead athlete. Things may get a little hairy, as I’m about to nerd out like a 90’s kid on some old Pokemon cards; the path ahead may become science-y and there may be instances where you say, “I think he just made that joint up…” but trust me, it’s there and it’s important! The shoulder girdle is a very complicated series of joints fixed upon the thoracic spine. Many factors actually play into shoulder health that are often overlooked and unaddressed within traditional "injury prevention" routines. I will go over those factors to help promote a more thorough and global understanding on how the shoulder is affected by specific movements and adaptations of overhead sports.

Most people view the shoulder as just the glenohumeral joint, this is where your humerus (upper arm bone) sits inside the glenoid (socket, on the side of the scapula). But many times they forget that the scapula glides around the ribs and is suspended by several muscles to the thoracic spine. It is also attached to the clavicle at the Acromioclavicular joint; the clavicle is attached to the sternum by the Sternoclavicular joint. Of course the sternum is attached to the ribcage which is also suspended by the, drum roll please, thoracic spine. The thoracic spine is comprised of 12 vertebrae and is supposed to be the more mobile part of the spine. All of this comes into play when assessing shoulder issues and creating preventative maintenance.

First let’s start with the obvious, the glenouhumeral joint. This is an important area because it is where most of the mobility of the shoulder is orchestrated.  The scapula changes its angle to help add mobility, but the glenohumeral joint, the actual ball and socket of the shoulder, is the most mobile joint in the entire body. This mobility can be altered, especially in overhead sports. The shoulder girdle will undergo soft tissue and bony adaptations due to the high velocity, extreme movements imposed on it; we generally see the result as having more external rotation and less internal rotation in the throwing shoulder. This phenomenon is known as Retroversion. This is a somewhat needed adaptation in overhead athletes. But if there is an asymmetry in total range of rotational motion between shoulders, that is known as Glenohumeral Internal Rotation Defecit(GIRD). This is not a needed adaptation.

It's theorized that a healthy, "perfect" shoulder should have 180 degrees of total rotation (90 degree external rotation + 90 degrees internal rotation). Someone with Retroversion typically loses some internal rotation on the dominant arm and gain extra external rotation. However, they will not always have the total 180 degrees of rotation due to the tightening of the tissues or bony adaptations. This is not a huge issue, unless Retroversion on the dominant arm becomes so bad it causes GIRD. GIRD early in an athlete’s career has been associated with Impingement Syndrome and Labral issues.

Traditional prehab approaches for overhead athletes seem to focus on the internal and external rotation of the humerus in the glenohumeral joint. It's pretty well known that the muscles of the rotator cuff undergo the most stress in the deceleration phase of the pitch. These muscles are forced to slow that arm down over and over again and tighten as up as a result. This is an important aspect to address, but when a pitcher throws a pitch, or a volleyball player spikes a ball, is it only that joint that comes into play? No! It’s a series of joint movements that ride and feed off of each other to translate into the action that the athlete needs to accomplish. So for that reason, we should not assume that when we find a case of GIRD, that it’s only an issue of the rotator cuff needing the proper stretching/strengthening. The rotator cuff does need extra treatment, but we can't pretend that that is the only factor needing to be addressed.

Having excessive external rotation has always been a usual thing among most overhead athletes. In fact, it's needed to add speed to a pitch or spike. However, we really can't say how much external rotation is needed for performance versus how much is too much and will increase the likelihood of injury. Even researchers haven’t been able to truly establish an, “acceptable” range of motion for glenohumeral rotation in baseball players or any other overhead athlete. I hypothesize this is because you can't try to quantify the effects of a total body movement on a single joint. When you watch a pitcher throw, you see some borderline exorcism-like external rotation occur in that shoulder. Immediately you can see that that repeated movement is going to cause an adaptation in the shoulder girdle to allow a crap ton of external rotation. But, is all external rotation created equal? What if the pitcher has poor thoracic extension, giving him a hunched posture? Or sub-par upward scapular rotation?  Would it not then cause a compensation further down the chain of movement? That arm would need to cock back for the throw, but the thoracic spine wouldn't extend and the scapula wouldn't upwardly rotate properly. It would require even more movement out of the glenohumeral joint through external rotation, causing the glenohumeral joint to lose congruency between the ball and socket. This would mean that his shoulder or even elbow, would burn out much faster than the other team’s pitcher who has been training as SAPT.

Our first job as Strength and Conditioning Professionals is to create a program that will essentially "bullet proof" the athlete from the demands of their sport and give them the strength and power to excel. That pitcher with the exorcism arm isn’t going to stop playing baseball, and continuing to throw through an entire season has shown to increase external rotation. It’s hard to say at what point it will become an issue since, again, there is no established norm. But from common sense we know that too much of anything can be a bad thing. So giving him drills to increase his internal rotation should help. Yet, I think addressing his global movement restrictions to ensure he is not compensating through even more external rotation in his throw will help too. Put them together with some scapular stabilization and eccentric external rotation drills and you’ve got a pretty effective prehab program.

Now I’m sure all the volleyball and tennis players are sitting patiently, waiting for their sport's turn. These concepts apply to all sports. If your thoracic spine is locked up and you slouch in your posture, it’s going to affect your entire, global, shoulder movement when you serve that ball. All overhead sports require thoracic extension, flexion and rotation as well as scapular upward rotation. Without it, the rotator cuff is going to take a larger brunt of the work. So when GIRD shows its ugly face, don't drop all the blame on your rotator cuff, it may not be the only root cause. If you have lost mobility in one area, it will be reciprocated elsewhere. Never look solely at the one joint in question, look at the movement.

Read More

Should Baseball Players Olympic Lift? 5 Reasons Why Ours Don't

The snatch and the clean and jerk are amongst the most impressive feats a human being can perform.  These two events are so highly regarded that every four years countries from all over the world showcase their best lifters to compete for national pride in the Olympic games. Many of us have seen it on TV or YouTube: An athlete grabs a heavy barbell that's placed motionless on the ground, then creates enough tension throughout their body to break inertia and throw the barbell overhead with inhuman ease, speed, and fluidity.  This is a breathtaking display of the perfect blend of mobility, explosiveness, technique, and overall stability.

These “O-lifters,” when compared to athletes of other sports, are often associated with having increased numbers of type II muscle fibers, greater ability to produce power, superior vertical jumping ability, and greater levels of hypertrophy.

One may thus conclude that practicing these movements may lead to adaptations towards becoming a bigger, stronger, faster, more powerful athlete… and one would be correct!  Who wouldn’t want that?

Baseball is one of the most “power-based” sports around, due to the stop-and-go nature of the game.  Power is a key component in a successful baseball player, and each year SAPT excels at augmenting our baseball players ability to harness and produce power during their hitting, sprinting, and throwing.

Are the Olympic lifts a phenomenal tool to develop power and explosiveness? Absolutely. Is a strength coach wise to employ them with many of his or her athletes? Of course.

However, ask any of our baseball beasts how often they snatch, clean, or jerk during a training cycle at SAPT and you will probably find that the range of frequency falls between “never” and “0 times a week.”

Why? Well, here are 5 reasons why SAPT baseball players don't Olympic lift:

1. Plane-Specific Transference of Training Qualities

(Note: In general, movement is categorized into three different planes: sagittal, frontal, and transverse. Sagittal plane movement involves anything going front-to-back, without any involved rotation or leaning side to side. So, things like lunges, squats, sit-ups, deadlifts, sprints, box jumping, and Olympic lifts, all occur in the sagittal plane. Frontal plane movement examples include side lunges, side shuffles, and side raises. Transverse plane movement involves anything with a rotation component; a perfect example of this is the stroke Obi Wan used with his lightsaber to kill Darth Maul.)

To an extent, strength and power development is very specific to the plane of motion in which it is trained.  Sure, there will be a bit of carryover from one plane to another when it comes to transference of athletic qualities, but to truly maximize potential in a given plane, you need to train that plane, specifically!

Guess which planes of motion a baseball player remains in to hit, throw, and/or pitch? The frontal and transverse planes.

Now, guess what plane of motion the Olympic lifts exclusively take place in? The sagittal plane.

So, for the baseball athlete, how can they train outside of the sagittal plane in order to best enhance power production in the frontal and transverse planes? Which exercises will provide them the most bang for their buck, be time efficient, and have the most carryover to their sport?

It is here I argue that the answer doesn't lie with the Olympic lifts, but in med ball work and lateral jumping variations. These become an enormous asset to the baseball player; they are fun (few things beat throwing a medicine ball into a wall as hard as you can), fairly easy to learn, allow the athlete to demonstrate and forge power output in a concerted manner, and they're downright effective!

Here are just a few of the med ball variations and lateral jumps we use at SAPT. (We have over 30 variations in each category to cycle through.)

MB Cross-Behind Shotput

MB Cross-Behind Shotput w/Partner Pass

MB Heiden to Side Scoop Throw

MB Cyclone Overhead Throw to Wall

MB Hop-Back Side Throw

In-Place Heiden with Stick Landing

Single-leg Depth Drop to Heiden with Stick Landing

The options are virtually limitless.

Assuming they are already proficient in the sagittal plane - as one DOES need to learn to master that plane before attempting to train frontal and transverse, similar how one should learn to add and subtract before performing algebra - roughly 80-90% of the "power" development we utilize with our baseball guys takes place outside of the sagittal plane. The remaining 10-20% we will fill by having them perform sagittal-based movements such as KB swings, broad jumps, and speed deadlifts and speed squats.

2. Faulty Movement Patterns Overhead

Watch the majority of people put their arms overhead, and, if you know what you're looking for, you'll often find nothing short of a multiplicity of grody compensation patterns taking place along the entire kinetic chain. Yes, even in overhead athletes.

Tony Gentilcore has said that the majority of trainees must "earn the right" to press overhead, and I continue to nod my head in agreement with him. Watch someone press a bar overhead (or snatch or jerk it, as one would during an O-lift), and, using a classification system I learned in my college biomechanics class: their mechanics lie somewhere between poop and utter poop.

I hope it goes without saying that it'd be far from prudent to have these folks continually throw a loaded bar overhead at high speeds. However, the strength coach can't freak out about ALL overhead movements for the baseball player, as their sport does, in fact (get ready to have your mind blown....), necessitate them going overhead.

While we can certainly improve a baseball player's overhead mechanics by having them perform core stabilization drills, thoracic spine mobilizations, shoulder "corrective" drills, and improving lat length, there's still something to be said for doing a few, shoulder-friendly, loaded overhead activities to complement the corrective drills and give the athlete a chance to further ingrain solid overhead mechanics.

One of our favorites is the landmine press, as the neutral grip position opens up the subacromial space - giving the rotator cuff tendons more room to "breathe" - and the natural arc of the press grooves some nice scapular upward rotation. Not to mention, the core musculature has to work like crazy to keep the pelvis and ribcage in a stable position. I've yet to work with anyone - including myself, and I have a REALLY beat up shoulder - who has shoulder pain while landmine pressing.

Another option is to use the single-arm bottoms-up KB press, as many of the benefits of the landmine press still apply (scapular upward rotation, core stabilization, etc.) yet you get to train through an even greater degree of humeral elevation (flexion+abduction), and also receive some nice "reflexive" firing of the rotator cuff due to the kettlebell wanting to shake back and forth in your hand.

Both of the above exercises can be performed half-kneeling, tall-kneeling, standing in parallel stance, or standing in a staggered stance.

There are a host of other options as well, but the point is there are much less "dummy proof" methods of training the overhead position without resorting to a jerk or snatch. (Even though the O-lifts do look way cooler.)

3. Wrist and Elbow Concerns

To say the success of a baseball player's career is at least partly contingent upon the health of his wrist and elbow is akin to saying that Superman derives his power by absorbing and metabolizing solar energy from the Earth's energy; both are platitudes.

As Dan John aptly put it, the "Rule #1" a strength coach needs to live and breathe by is Do No Harm! 

To rely on Olympic lifts as the primary tool for developing the baseball athlete would make about as much as much sense crossing the the Atlantic Ocean in a one-man canoe. Or using a canoe of any size, for that matter. Could it be done? Sure. But do there exist other ways to accomplish the same goal, with a much lower risk of something undesired occurring in the process? You bet.

Given that, day in and day out, baseball players' wrists and elbows already take a wicked beating from pitching, throwing, and hitting, why compound the issue by performing lifts that stress those same bodily structures more than perhaps any other lift? Especially given that, as you saw earlier in this article, there exists a host of other training modalities one can employ to enhance athletic power.

Regarding the power and hang clean, most baseball players have a hard enough time even being able to comfortably get into the clean position for front squatting, without the mere position causing their wrists or forearms to scream, so why we would choose to add velocity and then CATCH in that position is beyond me. And, if we're discussing the snatch: the top, catch position places considerable levels of strain on the UCLs (ulnar collateral ligaments) of both elbows; if you follow professional baseball to any capacity, then you for sure know how important the UCL is to a baseball player. Tommy John Surgery, anyone?

One last point I'll add is that not only do you have the wrists and elbows taking a beating during cleans, but the AC (acromioclavicular) joint, as well, due to that poor fellow living smack dab in the middle of the barbell's landing zone. The AC joint is located just inside of the index fingers during the catch phase of a clean, and while professional Olympic lifters often "flow" into the catch phase with minimal impact, it's far from uncommon to find high school and college baseball guys literally slamming the bar onto their shoulder during the catch, as it can take years to make it a fluid transition.

Now, just because baseball players overuse their elbows and wrists, and we don't recommend the inclusion of cleans and snatches in their programming, does this mean they are to be babied, forever relegated to pilates as the most intense training they're "allowed" to perform? Don't be silly!

As demonstrated earlier, we use the countless other methods at our disposal for their power training, and then have them perform plenty of heavy lifting to develop strength, structural integrity, and throwing speed.

4. Sagittal Plane Dominance           

A typical training program for our baseball guys are rich with lifts such as squat variations, deadlift variations, lunges, glute bridges, step-ups, and the list goes on. Notice a pattern?  These are all movements that occur in the sagittal plane.  (We can argue about frontal and transverse stability components in the single leg exercises, valid points indeed... but let's save that for another day.)

The point is, although we dip into the other planes of motion, the majority of the work is sagittal.  Throwing in Olympic lifting variations just adds to the volume of sagittal plane work and takes time away from working the other planes of motion.

To build a properly balanced athlete, we have to save some room in the program for some work in the frontal and transverse planes which can include tons of variations of: lateral step-downs and step-ups, lateral lunges, single arm farmer’s walks, anti-rotation/pallof presses, prowler side-drags, jumping, hopping, and, as exhibited earlier, medicine ball drills.

5. Time

I hate to beat a dead horse, but I am going to have to bring up the token argument against Olympic lifting: It takes too long to learn.

When it comes to training competitive athletes, time is the major limiting factor.  With most of our baseball guys, who typically have 3-5 months of off-season training with us, we opt for a program consisting of exercises that don’t require such a significance prerequisite time-commitment for the learning process.  The price in time we must pay to proficiently learn and perform the snatch, clean, jerk, and their variations safely and effectively (as it doesn't do them any good to perform the lifts poorly) is often more costly than we care for.  Instead we use the modalities shown above in point #1, for supreme power development.

Another critical focal point we attend to for baseball power development is sprint work.  We spend a significant amount of time working on our athlete's sprint technique, stride length/frequency, change of direction speed and starting speed.

With such limited time (and not to mention recovery capacities; many of these guys are still in leagues or camps throughout the off-season) it is simply impractical to throw in the O-lifts into the mix.

If a baseball player never learns to snatch during his athletic career, does it really matter?  I’d be more concerned with his on-base percentage, runs, stolen bases, strikeouts, consistency, and health.

Read More
Awesome Sarah Walls Awesome Sarah Walls

"Hello Sir, why do you hate lunges?"

Okay, I have to admit something - I receive the Parillo Performance Press magazine in the mail. I ordered from the company years ago and am seemingly on their mailing list for life. If you've seen this publication before, you'll no doubt have noticed it can be a little light on the science backing their articles and recommendations. I'm not saying the advice is bad for physique athletes, I'm not qualified to say that, I'm just pointing out it's a bit light on science... that's all. Over the weekend I got a new magazine in the mail - for August - well, I hadn't actually looked at one in a while, so I flipped through it. I landed on the Q&A section with Iron Vic. I don't know who this is... if it's someone I should know, please feel free to enlighten me in the comments section.

One of the questions was asking why Iron Vic hates lunges. I just thought the answer was too good not to post (my highlighted points are below if you don't want to read the whole thing... but seriously, read it):

The high... okay, low... points in this for me are:

  • The idea that the lunge is a "strange stupid exercise" - as if to suggest a lunge is some exotic variance or something more useful.
  • That the lunge was "devised by Olympic weightlifters." Hmm, interesting... I sort of think of it as a basic movement pattern that all humans go through naturally in any number of a variety of situations for both daily life and sport.
  • I truly appreciate his italicized emphasis on how if a lunge is done correctly "the back knee touches the floor on each rep." as if to say with that extra emphasis "can you even imagine going all the way down?"
  • More great quotes: "lunges are worthless"
  • "I am no fan of this pathetic exercise"
  • "The lunge, on the worthless exercise scale..."
  • "Ditch the lunge."

Wow. Just wow.

I guess we'll have to agree to disagree. For whatever it's worth, Parillo products are actually pretty good.

Read More

Designing Practical Warm-ups for the Overhead Athlete

To give a brief recap, if you missed Stevo's post on Friday: August is dedicated to training means, modes, and methods for overhead athletes (these are sports like baseball, softball, volleyball, swimming, and javelin). 

The pre-practice and pre-competition warm-up is extremely important for any athlete, but to an even greater degree for those athletes who need to give special consideration to the shoulder complex. As a strength coach, I've given numerous warm-up protocols to numerous athletes over the years and while, in a pinch, I could easily produce one that would be well-balanced and comprehensive, I've always preferred to plan my warm-ups in advance.

Preplanning ensures that every muscle, joint, angle, whatever has been taken into consideration and a decision has been made about how to address it for that day (or not). The important thing here being that you must give yourself the chance to make a decision about something ahead of time vs. simply overlooking the area.

Most coaches plan warm-ups on the fly, but like most things at SAPT, we tend not to do what "most" do... that's usually the easy way... and we know the right way! Thus, why we're the premier strength and performance training facility in the Fairfax, Tysons, McLean, Vienna areas.

Getting back to the practical warm-up: Over my time working with college athletes, I ended up developing an ever-evolving template of warm-ups that I would rotate and match to the first 15- to 30-minutes of the practice plan. For example, if the start of practice was going to be ripe with sprinting, the I would choose the plan to match. On the other hand, if practice was starting with quite a bit of hitting (volleyball) where I knew the shoulder needed to be totally warm and ready, then that would inform my warm-up choice.

http://youtu.be/IfJi8KLhtlg

This video is just showing the team warming up... keep that in mind while you watch the power + the height the guys are getting on the ball off one bounce. What's the warm-up look like before this part of the warm-up??? I bet it's a pretty good one.

Anything is an option: body resistance only, bands, medicine balls, actual sporting equipment (i.e. a baseball), weights, etc... Shoot, you can even use a sled/Prowler to do a fantastic total body warm-up that fully addresses the shoulders.

So, when planning a warm-up (or your own set of templated warm-ups) make sure you are addressing all the primary movers and in all directions - planes of motion - plus weaving in extra prehab that may not occur in the weight room and copious amounts of shoulder friendly mobilizations, stabilizations, and drills.

Read More

Intro: Overhead Athlete Basics

Note: Any time I use the phrase "overhead athlete" I'm referring to an athlete who's sport requires him or her to bring their arm(s) repeatedly overhead. The most common sports falling under this umbrella are baseball, volleyball, softball, swimming, tennis, and, perhaps the most awesome of the bunch, javelin. 

In the wake of SAPT's inception, back in Summer of 2007, arrived the immediate realization that overhead athletes would be the predominant population we'd be coaching and training within the walls of our facility. In fact, you could have nearly fooled me if you told me that the only competitive sports in the Fairfax, Mclean, Tyson's Corner, Vienna, and Arlington regions were baseball and volleyball!

Sure, we had, and still have, the pleasure of working with a host of people from countless other athletic "categories" - field athletes, track, powerlifting, endurance sports, water polo, fencing (yes, fencing), and military personnel - overhead athletes were and still remain roughly 80% of the folks we get to work with at SAPT.

As such, given such a large and varied sample size, and years to work with these individuals, we've had ample time to manipulate X, Y, and Z training variables to accurately delineate which constituents of a sound training program are going to most efficiently and effectively help the overhead athlete feel and perform at their best.

Throughout the month of August, we at SAPT are going to dedicate our time to providing you with solid and applicable information that you can immediately employ, be you a strength coach, physical therapist, sport coach, or athlete. And hey, even if you don't do anything related to overhead sports, you can still pick up some quality gems related to vertical jumping, shoulder-friendly pressing variations, Olympic lifting, sprinting, and a plethora of other topics that will undoubtedly pique your interest.

The primary reason we are devoting an entire month to the topics of training and management of overhead athletes is that it remains abundantly clear that there still exists a unfortunate paucity of coaches - sport and strength coaches working with youth, amateur, Division I, or Professional athletes - who truly understand the unique demands overhead athletes face, and how to account for these demands both on the practice field and in the weight room.

Due to the awful tragedy of early sports specialization, and the lack of coaches and parents (despite being well-intentioned) who understand how to implement a sound, yearly training model (that includes time OFF the court or field), we are seeing injuries occur in players at the young age of 13 that didn't used to happen until the age of 25 (or ever). Baseball players are realizing too late that's actually not a good idea to throw year-round, and youth volleyball players are experiencing an unprecedented volume of upper and lower extremity issues that could have been prevented simply by taking a season to play a different sport, and/or immersing themselves in a solid strength & conditioning program.

The overhead athlete's arm and shoulder continually undergo insane stressors that need to be accounted for; and not only by the strength coach but the sport coach as well, as they control how many times in a practice an athlete throws, hits, or jumps.

Let's take just a quick look at what a baseball pitcher's arm is assaulted with every time he throws a baseball:

- His humerus (upper arm bone) undergoes internal rotation at roughly 7,200° per second. In case you're wondering, and would like a more scientific way of describing things: that is a crap ton of revolutions in a very short period of time. - His elbow has to deal with approximately 2,500° of elbow extension per second.His glenohumeral (ball-and-socket) joint experiences about 1.5x bodyweight in distraction forces.

And that's just the tip of the iceberg, as we haven't even dived into the other demands the wirst, elbows, and shoulders face, let alone what occurs at all the joints below the shoulder.

These demands simply won't be attenuated by doing a few hundred reps of band work before and after practice, let alone throwing the athlete into the proverbial squat-bench-deadlift program overseen by the high school football coach.

Over the next four weeks, you can expect to find us discussing:

  • Practical warm-ups for the overhead athlete
  • Why power development for baseball, softball, and volleyball players needs to be approached differently compared to many other sports
  • Olympic lifting for overhead athletes
  • The truth about vertical jump training for volleyball players
  • The myriad myths and fallacies surrounding "shoulder health" and "arm care" programs
  • Biomechanical asymmetries - both undesired and desired - that accrue in an overhead athlete's body due to the inherent nature of the sport, and what to do about them
  • Energy system training
  • Nutrition for fuel during tournaments and game day
  • And, of course, as many Star Wars and Harry Potter references that we can find room for
  • And much, much, more

All of us at SAPT are looking forward to the next month together!

Read More
Awesome Sarah Walls Awesome Sarah Walls

Give Me Strength: Monthly Wrap Up

Today is the last day of July 2013 and marks the conclusion of SAPT's first month of pre-planned and themed content for you, our precious readers, to gobble up! Throughout the 14 total posts we put up, you'll find information on everything related to the importance of strength as it relates not simply to athletic performance, but also to fitness enthusiasts, distance runners, and desk jockeys (like I am now!).

If there is one thing we're passionate about at SAPT... well, there are about infinity things we're passionate about... but, if I had to pick just one, it would be that STRENGTH is the most important factor in reaching virtually any goal. I mean, after all, there is loads of research pouring out validating the importance of strength training and exercise for everything from mother-fetus health during pregnancy to impacting the way the brain functions to everything in-between.

Steve & Sarah's working relationship.

We've got a new and very sport specific theme for the month of August. Please check back on Friday for Stevo's killer introduction to the month!

Read More
Review - Social Graphic - Small Thanks.jpg